Aligning Word Embeddings of Different Languages within a Shared Embedding Space

Barun Patra, Maximilian Sieb, Hima Tammineedi
Carnegie Mellon University, School of Computer Science

Introduction

Can we formulate a convex optimization problem for learning mappings between word embedding spaces of different languages?

How can we leverage knowledge of multiple dictionaries by mapping into a shared embedding space?

Background

Geometry aware Multilingual Mapping (GeoMM)
We follow the work of Jawanpuria et al. (2018). Given word embedding spaces \(X_i, Y_i \) we construct a mapping matrix \(U_i \in \mathbb{R}^{k \times d} \), such that \(x_{ij} \in X_i \) is aligned with \(x_{ij} \in X_k \). We then optimize the following loss function:

\[
\max_{U_i} \left\| \lambda \| B_i \|_F + \sum_{i,j \in L} \| X_i U_i B_i^T X_j^T - Y_{ij} \|_F^2 \right\|
\]

Where \(\Omega_i \) denotes the family of orthogonal matrices, and \(B_i \) is a learned distance metric, taking into account feature correlations.

The multilingual extension for the same is pretty straightforward then. Given \(L = \{1, \ldots, l\} \), a set of languages, then we learn a collection of \(U_i \) matrices, one for each language, to transform them into a common embedding space, and then learn a \(B > 0 \) distance matrix, to learn the distances in the common embedding space. Specifically, the following objective function is optimized:

\[
\max_{U_i \in \Omega_i, B > 0} \left\| \lambda \| B \|_F + \sum_{i,j \in L} \| X_i U_i B_i^T X_j^T - Y_{ij} \|_F^2 \right\|
\]

Relaxed Cross-domain Similarity Local Scaling (RCSLS)
We follow the work of Joulin et al. (2018). Their work proposes a new relaxed version of the cross-domain similarity local scaling (CSLS) loss originally proposed by Lample et al. (2018) for learning a mapping between two (normalized) embedding spaces \(X \) and \(Y \):

\[
CSLS(x, y) = -2 \cos(x, y) + \frac{1}{k} \sum_{w \in \mathcal{N}(x)} \cos(x, y) + \frac{1}{k} \sum_{w \in \mathcal{N}(y)} \cos(x, y)
\]

\(\mathcal{N}(x) \) indicates the nearest neighbors of \(x \) taken from the space \(W \) (where \(W \) is a matrix), and \(\cos \) is the cosine similarity metric.

This loss intuitively minimizes the cosine distance between aligned words, while penalizing the distance between a word and its nearest neighbors.

Joulin et al. (2018) propose the following relaxed version of the CSLS loss, dubbed RCSLS, by following previous work and constraining \(W \) to be orthogonal and assuming that the word vectors are \(\ell_2 \)-normalized. Note that the loss here is formulated in terms of all word pairs:

\[
RCSLS(x, y) = \min_{W} \sum_{i,j \in L} 2 x_{ij}^T W y_{ij} + \frac{1}{k} \sum_{w_i \in \mathcal{N}(x)} x_i^T W W^T x_i
\]

We can now relax the orthogonality constraint on \(W \) by using the convex hull of \(\mathcal{W} \) (the unit ball of the spectral norm).

The loss can now be rewritten as

\[
RCSLS(x, y) = \min_{W} \sum_{i,j \in L} 2 x_{ij}^T W y_{ij} + \frac{1}{k} \sum_{w_i \in \mathcal{N}(x)} \sum_{w_j \in \mathcal{N}(y)} x_i^T W W^T x_i
\]

Where \(\mathcal{N}(w) \) denotes the set of all subsets of \(\{1, \ldots, n\} \) of size \(k \).

Combining GeoMM and RCSLS

RCSLS has the benefits that it optimizes a loss function actually used during test time for retrieval, and this loss is convex. However, this method only works for pair-wise mappings.

GeoMM has the benefit that it maps languages into a shared embedding space. The drawbacks are that it uses different loss functions during training and test, and the loss function is not convex.

Thus, we propose to combine these two methods in order to produce a method that is convex, uses the same optimization function at both train and test times, and maps languages into a shared embedding space. We use the RCSLS loss formulation and optimize over the set of orthogonal matrices \(U_i \) and the set of positive-definite matrices \(B_i \):

\[
\min_{U_i \in \Omega_i, B_i > 0} \frac{1}{n} \sum_{i=1}^n -2 x_i^T U_i^T B_i y_i + \frac{1}{k} \sum_{w_i \in \mathcal{N}(x_i)} x_i^T U_i^T B_i y_i + \frac{1}{k} \sum_{w_j \in \mathcal{N}(y_i)} x_j^T U_i^T B_i y_j
\]

Problem Reparameterization

Consider the fact that the distance matrix \(B > 0 \) learned is symmetric. Consequently, it can be factored as \(B = Q^T D Q \), where \(Q \in \Omega \), and \(D \) is a diagonal matrix with positive values. Thus, we can rewrite the objective as

\[
\min_{U_i \in \Omega_i, D > 0} \frac{1}{n} \sum_{i=1}^n -2 x_i^T U_i^T Q D Q^T y_i + \frac{1}{k} \sum_{w_i \in \mathcal{N}(x_i)} x_i^T U_i^T Q D Q^T y_i + \frac{1}{k} \sum_{w_j \in \mathcal{N}(y_i)} x_j^T U_i^T Q D Q^T y_j
\]

Estimating \(U_i, D \) requires estimating \(3k \times d + d + d \) parameters over the \(3d \) parameters required to be estimated for the original formulation containing \(B \). Consequently, this should make the estimation problem easier, particularly when there is less data.

Antonym Penalty

To improve the mapping between language word embeddings, we hypothesize that incorporating antonym pairs to enforce larger distances between words with opposing meanings should help.

Thus, we used a WordNet antonyms list and incorporated this into the RCSLS loss.

\[
\frac{1}{n} \sum_{i=1}^n \sum_{z_{i,j} \in A_{ant}} 2 x_i^T W W^T y_i
\]

Here, \(A_{ant} \) is the subset of all words \(\{x_1, \ldots, x_n\} \) for which we have corresponding antonyms \(y_i \) in the training set. This term can be seen as an additional regularizer to enforce a certain distance in the target domain between antonyms.

Methods

Experimental Results

<table>
<thead>
<tr>
<th></th>
<th>en-es</th>
<th>en-fr</th>
<th>en-ru</th>
<th>en-zh</th>
</tr>
</thead>
<tbody>
<tr>
<td>GeoMM</td>
<td>82.6</td>
<td>82.8</td>
<td>51.3</td>
<td>49.1</td>
</tr>
<tr>
<td>RCSLS</td>
<td>84.5</td>
<td>83.1</td>
<td>57.5</td>
<td>45.1</td>
</tr>
<tr>
<td>Combined (ours)</td>
<td>83.1</td>
<td>81.7</td>
<td>54.0</td>
<td>49.5</td>
</tr>
</tbody>
</table>

We see that our combined method generally matches or improves upon the GeoMM formulation.

The performance is worse compared to the RCSLS baseline. However, we do not expect our combined method to improve over RCSLS as in both the GeoMM and our method, we first map to a common embedding space, as opposed to the direct mapping between embedding spaces that RCSLS performs. In that sense, RCSLS directly optimizes for bilingual mappings whereas our method and GeoMM optimizes for multilingual settings.

The RCSLS task is thus generally easier, and so it should have higher performance. Our combined method therefore loses some of the accuracy benefits in exchange for theoretically better performance on multiple languages at a time.

Discussion & Future Directions

The individual baseline results of both RCSLS and GeoMM are comparable to each other. RCSLS optimizes for a direct mapping between two languages, while GeoMM maps via a shared embedding space. Therefore, the problem solved by GeoMM is harder.

We reparametrized the problem of GeoMM to decrease the number of estimated parameters and projected into the space of diagonal PSD matrices. However, the optimized parameters yield worse performance than using the original formulation.

The combined approach leads to improvements for some language pairs, but not others, compared to the individual benchmarks of RCSLS and GeoMM. Our approach of using antonyms to instill a prior into the optimization that words with opposing meanings should be farther apart also did not yield improved results over the baselines. We suspect that the antonym regularization did not lead to improved performance because this regularization is still not enough to enforce structure in the embedding space. This regularization was meant to enforce some structure, but it was perhaps not enough.

One observation that was made about the original RCSLS paper was that the optimization performed there is unconstrained, and the authors merely stop the optimization process after some number of iterations. We believe that there is opportunity for a more principled approach here, finding explicit constraints for the optimization procedure.

References